
Journal of Industrial and Systems Engineering 
Vol. 2, No. 1, pp 1-15 
Spring 2008 

 
 
 

Door Allocations to Origins and Destinations at Less-than-Truckload 
Trucking Terminals 

 
Vincent F. Yu1, Dushyant Sharma2, Katta G. Murty3* 

 
1Department of Industrial Management, National Taiwan University of Science and Technology, Taiwan 

vincent@mail.ntust.edu.tw 
 

2Equity Trading Lab, Morgan Stanley, 1585 Broadway Ave, New York, NY 10036 
Dushyant.Sharma@MorganStanley.com 

 
3Department of Industrial and Operations Engineering, University of Michigan, USA  

murty@umich.edu 
 

ABSTRACT 
 

For an LTL (Less-than Truckload) carrier, the allocation of doors at a consolidation facility to 
outbound trailers assigned to various destinations, and to inbound trailers in the continuous 
stream arriving from various origins, has a significant impact on its operations, and on the 
nightly man-hours needed for consolidation. In the past literature door allocations to 
destinations of outbound trailers are determined using deterministic mathematical models 
based on average volumes of shipments between origin-destination pairs. The online nature 
of allocation of doors to inbound trailers is either ignored or simple rules like FCFS (First 
Come First Served) are assumed that do not take advantage of the data on the trailer's actual 
contents readily available at the time of its arrival. In reality the actual shipment volume 
between any origin-destination pair varies significantly from day to day. Due to this wide 
variation destination door allocations that are optimal for the average volume tend to be far 
from optimum for most nights. Also, very simple on-line policies for door allocation to each 
inbound truck at the time of its arrival based on its actual contents can significantly reduce 
the man-hours needed to consolidate its contents. 

In this paper we develop a new model that uses such an on-line policy for door allocations to 
inbound trailers, and determines doors to allocate to destinations to minimize the expected 
man-hours for consolidating freight nightly taking the random variation in freight volumes 
into account. Computational results on data from an actual facility indicate that the man-hour 
requirement can be reduced by over 20% compared to current practice. 

 

Keywords: Cross-docking, Less-than-truckload freight terminal, Man-hours for consolidation 

 

1. INTRODUCTION 
 
Freight transportation is a $ 580 billion industry in U.S.A. in annual revenue in 2001, of which 
trucking has an 80% role (Bureau of Transportation Statistics 2003). Less-than-truckload (LTL) 
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carriers are trucking firms that specialize in moving smaller shipments, typically weighting less 
than 10,000 pounds. Since they commonly use 28-foot trailers that can carry approximately 
20,000 pounds, LTL carriers have to consolidate multiple customer orders onto the same trailer, 
thus leading to an important freight consolidation issue. 
 
Most national LTL carriers use a hub-and-spoke network for transporting freight. In such a 
network, terminals of an LTL carrier are classified into two types: End-of-line terminals (EOLTs) 
and Intermediate Consolidation Terminals (ICTs). All inbound freight to an EOLT comes 
through an ICT with which it is affiliated, and all outbound freight from that EOLT goes out 
through such an ICT. In reality an EOLT may be affiliated with a different ICT for freight going 
to different destinations and coming from different origins. 

 

 
 

Figure 1. Example of a hub-and-spoke network used by LTL carriers. 
 
At each EOLT freight from various customers (possibly with different destinations) is received 
during the day. This freight is packed on pallets so that each pallet contains freight to a single 
destination only. The pallets are loaded into a trailer and taken to an ICT where it is sorted and 
repacked into separate trailers by destination. This sorting and repacking operation at ICT is 
called freight consolidation operation, or crossdocking. 
 
The cost of the labor-intensive freight consolidation operation accounts for about 15-20% of the 
operational costs of an LTL carrier. It is very complex because dock workers must quickly 
process a large amount of freight in a short time window. Since the margin of an LTL carrier is 
very low, consolidating freight efficiently is critical for the carrier's profitability. In addition, there 
are many other benefits resulting from efficient freight consolidation such as higher on-time 
delivery rate and customer satisfaction. This paper deals with the issue of improving the 
efficiency of freight consolidation operations of hub-and-spoke LTL carriers by providing better 
door allocations to destinations (a decision made once in a period of about six months to a year) 
and door allocations to the stream of inbound trailers (a decision made in real-time). 
 
In mathematical programming, it is well recognized that if the data elements in a model are 
subject to random fluctuations, the optimum solution of the model with data elements replaced by 
their average values will be a very poor solution for the original problem. This point has been 
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emphasized in a recent article in ORMS today (Savage et al. 2006), which describes several 
systematic errors that arise from making decisions using average data. We provide a simple 
example here to illustrate this point. Suppose the model for a problem to be solved daily is a 
linear program: minimize cx, subject to Ax b≥ , 0x ≥  in which the cost and RHS constant 
vectors c, b are random with expected values c , b . Let x  be an optimum solution to the 
deterministic linear program: minimize cx , subject to Ax b≥ , 0x ≥ . x  will actually be 
infeasible for the original problem on most days, and even if feasible it is likely to be far from 
optimal. That is why in stochastic linear programming x  is not considered as a candidate 
solution for the original problem. 
 
The main contribution of this paper is the development of a model incorporating the uncertainty 
in data using actual data as it exists instead of averages. The model also accommodates online 
allocation of incoming trailers. To the best of our knowledge, the models in previous literature are 
based on average data and ignore the online allocation policy or assume a simple policy such as 
First Come First Serve (FCFS). We present two heuristic methods to solve the problem based on 
local search and genetic algorithms. We provide computational tests using data collected from a 
terminal and compare it with the current practice at the terminal. Our results show a 20% 
improvement over current practice, which is significant for this industry. 
 
The rest of the paper is organized as follows. We give an overview of the daily operations at an 
ICT and outline important facts affecting the door allocation decisions in the remainder of this 
section. Section 2 provides a review of the previous literature on this topic. An outline of our 
approach is given in Section 3. We describe an online policy for door allocation to inbound 
trailers in Section 4. We formulate the destination door allocation problem in Section 5 and also 
describe two heuristic methods for solving this problem. We present a computational study of the 
model in Section 6 and a summary of our work in Section 7. 
 
1.1 Daily Operations at an ICT 
 
The daily operations at ICTs happen during a short time window of the day. For most carriers, 
drivers from EOLTs bring their trailers to the ICT in late evening. These inbound trailers form a 
continuous arriving stream at the ICT beginning around 10 PM and lasting up to around 1 AM. As 
these inbound trailers arrive, pallets are unloaded from them using forklifts, which are then 
loaded to proper outbound trailers in the freight consolidation operation. At the ICT, this freight 
consolidation operation goes on at a frenetic pitch every night usually between 10 PM and 3 AM, 
with peaks occurring in the middle of this time window. The room where this takes place is called 
the dock, which has many doors where trailers can be parked, all around its perimeter. 
 
Upon arrival at an ICT, the driver of each inbound truck first stops at the check point to receive 
instructions from greeters on where to park the trailers. The driver may be asked to deliver the 
trailers directly to a door or park them in the yard. After the trailers are parked, the driver 
becomes a dock worker and starts unloading any inbound trailers ready for unloading (either 
her/his own, or those brought by some other drivers earlier), under the supervision of the freight 
operation supervisor (FOS) at the ICT. The driver continues this unloading activity until the 
FOS instructs her/him to drive back outbound trailers to her/his home EOLT. Once a dock worker 
begins unloading an inbound trailer, s/he is solely responsible for unloading all of the freight in 
the trailer. 
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When an inbound trailer is completely unloaded, a hostler moves the emptied trailer to the yard 
and the door becomes available for unloading another inbound trailer. When an outbound trailer is 
full, a hostler will replace it with an empty trailer to collect additional freight for the same 
destination. 
 
To determine where to unload a trailer, the FOS examines the content of each inbound trailer 
sequentially. For each inbound trailer, the FOS will go over the trailer contents and estimate 
which loading doors will receive most of the freight from the trailer. The FOS will then try to 
allocate an appropriate unloading door, near or between these loading doors, to the trailer in order 
to save time on moving freight on the dock. When all unloading doors are allocated to an inbound 
trailer, the remaining trailers are scheduled to wait in the yard. 
 
Because of time pressure, most of the time, the FOS can not revise door allocations to inbound 
trailers that were already made, and when making an allocation for an inbound trailer s/he does 
not have enough time to consider the contents of other inbound trailers. 
 
1.2 The Door Allocation Decision at an ICT 
 
Typically, the dock at an ICT has between 100 and 150 doors. The following are important facts 
governing the door allocation decision making process: 
 
F1: There is uncertainty in the number of inbound trailers that will arrive at an ICT from an 

origin, their arrival times, their contents and the time needed to unload them. The algorithm 
used to make door allocation decision to inbound trailers has to take this uncertainty into 
account. 

 
F2: The volume of traffic from an origin to a destination through an ICT (in terms of the number 

of pallets, or even the number of inbound trailers) varies significantly from day to day. Also, 
data on the actual volume in a day is not usually available accurately until all the trailers 
arrive at the ICT. 

 
F3: The industry practice is to allocate one or more dedicated doors to each destination. These 

doors are therefore called destination doors (or outbound doors, loading doors, stack 
doors, etc.), and leave these destination door allocations fixed for periods of 6 months to a 
year. 

 
F4: LTL terminals use different types of material handling equipment for consolidation. 
 
The reason for F3 is the following: the consolidation activity with a limited time window takes 
place at a feverish pitch, so it is helpful to keep destination door allocations fixed so that dock 
workers can memorize them and consolidate the pallets quickly and efficiently. Normally, 
destination door allocations are only changed when new destinations start appearing or when 
there are significant shifts in freight flow patterns. 
 
Regarding F4, the most commonly used equipment now-a-days is the forklift. So our model and 
the data in our numerical examples are based on the forklift as the material handling equipment 
used for consolidation. 
 
Doors remaining after destination doors are allocated are called inbound doors (or unloading 
doors, strip doors, etc.) and used for parking inbound trailers. The productivity of freight 
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consolidation operation is measured by: (Total Number of Pallets Consolidated)/(Total 
Man-Hours Spent). Since all arriving pallets have to be handled, we determine the optimal door 
allocations that will help minimize the total man-hours spent on consolidation. The number of 
man hours spent is closely determined by the time spent on forklift moves between unloading and 
loading doors. Therefore, we minimize the total time spent on forklift moves during the 
consolidation operations. 
 
2. REVIEW OF PREVIOUS WORK 
 
We could find only four publications and a conference proceedings paper devoted to improving 
the freight consolidation in OR literature in the last 20 years. 
 
Tsui and Chang (1990, 1992), and Bermudez and Cole (2000) formulate the problem of 
simultaneously allocating both inbound and outbound doors to trailers as either a bilinear 
program, or a quadratic assignment problem. The objective is to minimize a weighted distance 
measure between inbound and outbound doors. Here the weights are based on average volume 
between various (origin, destination) pairs. Peck (1983) also proposes a similar model to 
minimize the dock workers travel time for consolidation, with an additional constraint on the time 
span for the operation. Bartholdi and Gue (2000) also propose a similar model to minimize a 
combination of the cost of moving freight and the cost of delays due to congestion in the dock, 
subject to an additional door pressure (a measure of the amount of freight flow in an area) 
constraint. All these models use average data. Due to the prevailing uncertainty any plans made 
for average volumes may turn out to be poor for the day. Also due to the facts F1 and F2, they 
cannot get actual data for the night for their model. 
 
Gue (1999) developed a model that addresses the effect of real-time allocation (with limited 
look-ahead) of inbound trailers by FOS on the choice of destination door allocation. The effect of 
real-time scheduling is captured indirectly by a linear programming model, that approximates the 
cost of consolidation for a given destination-door allocation. A local exchange based search 
algorithm is then used to identify the destination door assignment with the best objective value 
under the linear programming model. The resulting candidate solutions are further evaluated 
using a simulation model to identify the best solution. The model is conceptually more realistic. 
However, the facts F1 and F2 are not addressed directly in the model. 
 
3. OUTLINE OF OUR APPROACH 
 
Here is a summary of our approach: 
 
i. Simple Online policy for Inbound Trailers: Assuming that the door allocations to 

destinations is given and fixed, we develop a very simple on-line policy to be used daily for 
making door allocations to inbound trailers as they arrive. At the moment an inbound trailer 
arrives, if all inbound doors are occupied, it is sent to the yard to be parked temporarily. If 
there are open inbound doors at that time, the on-line policy computes the man-hours 
needed to consolidate freight in it if it is parked at each of those open doors, and selects the 
best among them to park this trailer. 

 
Also, when an inbound door becomes available, and there is no inbound trailers in the arriving 
stream, the on-line policy decides which of the inbound trailers parked in the yard to move to that 
door for unloading, using a similar approach. 
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ii. Destination-door allocation problem: Given the on-line policy to be used for allocating 
doors to inbound trailers daily, this is a one-time decision to determine the door allocations  
to destinations to minimize the expected number of man-hours needed for consolidation 
nightly taking the random variation in freight volumes into account. 

 
4. ONLINE POLICY FOR ALLOCATING DOORS TO INBOUND TRAILERS 
 
This policy assumes that doors allocated to all the destinations are fixed and given. All remaining 
doors are unloading doors; these are the doors to be used for parking inbound trailers for 
consolidation. 
 
If there are some free unloading doors at the time of arrival of an inbound trailer, this policy 
selects the best among them to park this trailer to minimize the man-hours needed to consolidate 
the freight in it. 
 
Let  r  denote the number of pallets inside this trailer, and  kj   the door allocated to the 
destination of the  kth  pallet for  k = 1 to  r. Let  abt   denote the forklift travel time in 
minutes from door  a  to door  b  plus the average pallet unloading time at door  a  and the 
average pallet loading time at door  b, for every pair of doors  a, b  in the terminal. The data 
matrix  abt   is calculated at the terminal by actual observations, and the data  r, kj   become 
available from the trailer's contents when it arrives, and the destination door allocations. 
 
Then the consolidation time (in man-minutes) for this trailer if it is parked at unloading door  a  

is 
1

k

r

a aj
k

T t
=

=∑ ; and the unloading door to allocate to this trailer is the one attaining the minimum 

in { aT :  a  is a free unloading door at the arrival time of this trailer}. 
 
This policy is myopic in the sense that it is only guaranteed to minimize the processing time of 
the inbound trailer being considered, but may worsen the processing time of future arrivals. 
However, the average processing time of a trailer is between 30 to 40 minutes; and it is very 
difficult to predict how many trailers will arrive in that time, or their contents because of the 
uncertainties in the arrival process mentioned earlier. Further the time to store and retrieve a 
trailer from the yard is significant (5-10 minutes depending on the equipment used). The limited 
number of doors available and the storage overhead make any policy that reserves open doors for 
future arrivals impractical. For these reasons we found that this myopic policy is a good 
compromise among those that can be implemented. 
 
If all unloading doors are occupied at the time of arrival of an inbound trailer, then it is 
temporarily parked in the yard. Inbound trailers parked in the yard are brought to the dock for 
consolidation, when an unloading door, say  d, becomes available and there is no inbound trailer 
in the arriving stream to take it at that time. At that time, let  I  denote the set of all inbound 
trailers parked in the yard. For i I∈ , let iaT  denote the man-minutes to consolidate the trailer  

i  if it is parked at any unloading door  a, computed as above. Let *
iT �  = min { iaT : a  is any 

unloading door whether it is free at this time or not}, minimum unloading time of inbound trailer  
i  at the best possible unloading door for it. 
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For each i I∈ , compute the ratio */id id iR T T= � . Then bring the inbound trailer *i  that attains 

the minimum in min{ idR : i I∈ } to unload at door  d  at this time. Break ties arbitrarily. This 
criterion selects the inbound trailer to unload among those in the yard at this time, as the one that 
compares most favorably with the best door for unloading it. 
 
5. DESTINATION-DOOR ALLOCATION PROBLEM (DDAP) 
 
In the DDAP, we are interested in finding an allocation of doors to destinations such that each 
door is allocated to at most one destination, and this allocation helps to minimize the expected 
man-hours spent on consolidating freight daily. We formulate a scenario-based stochastic model, 
which we now describe in detail. 
 
5.1 Mathematical Model for DDAP 
 
In order to describe our model, we first present some notation. Let 
 
J = the set of all outbound destinations. 
D = the set of all doors in the ICT. 
n = |J|, m = |D|. It is assumed that m > n. 
 
Definition 1. A scenario  s  contains the information on inbound trailers and freight arriving at 
an ICT for freight consolidation in a night. The information includes a set of inbound trailers, 
denoted by sI , that will be consolidated at the ICT during that night, arrival time of each trailer 
in sI , and contents of each trailer in sI . 
 
A scenario is therefore all the relevant data on the inbound trailers arriving in a night to 
implement the online policy for inbound trailers. Let 
 
K = the set of all possible destination-door allocations. 
 
δ  = the policy used at the ICT to allocate inbound trailers to unloading doors, note that there can 
be many different policies for allocating unloading doors to arriving inbound trailers. We 
discussed one of these in Section 4. 
 
s = a symbol used to denote a scenario. 
 
P = the conceptual probability distribution of scenarios, which is unknown. 
 

( , , )F s τ δ  = the total man hours spent in moving all pallets from inbound trailers to outbound 
trailers in a night when the scenario for that night is  s, the destination-door allocation is τ , and 
the FOS allocates unloading doors to inbound trailers according to policy δ . 
 

( , , )pf E sτ τ δ= , the expected value function of ( , , )F s τ δ  with respect to the probability 
distribution  P  of scenarios for Kτ ∈  when δ  is the policy used to allocate unloading 
doors to inbound trailers. 
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The DDAP is to find a * Kτ ∈  such that *( ) ( )f fτ τ≤  for every Kτ ∈ , i.e., we want to 
solve the following optimization problem: 
 
min{ ( )f τ : Kτ ∈ } (1) 
 
Problem (1) is difficult to solve exactly, because of the following reasons: 
 
i. It is not possible to find a closed form representation of the objective function ( )f τ , and 

even calculating its value for a given τ  exactly is not possible. For any given 
destination-door allocation τ , we can only estimate ( )f τ  by running a simulation using a 
prepared representative set of sample scenarios. 

 
ii. The number of possible destination-door allocations is very large. 
 
Therefore, it is impractical to develop an exact solution method for solving Problem (1). In the 
following sections, we will describe two approximate solution methods for getting good solution 
for it. 
 
These approximate methods are based on a finite sample set of scenarios from the probability 
distribution  P  that maybe generated by 
 
– data of daily occurrences collected over a representative period of time, or 
 
– a realistic sample set of scenarios generated by a simulation model for the arrival process of 

inbound trailers. 
 
We use the symbol  S  to denote the sample set of scenarios generated. 
 
5.2 Solution Methods 
 
For each scenario s S∈ , destination-door allocation τ , and inbound trailer assignment policy  
δ , the function value of ( , , )F s τ δ  can be calculated easily. Using these values for each 

scenario s S∈ , we can estimate the value of ( )f τ  as the sample mean ( )f τ  given by 
 

( , , )
( )

| |
s S

F s
f

S

τ δ
τ ∈=

∑
 

 
However, it is impractical to evaluate ( )f τ  for every Kτ ∈  to find the optimum *τ  due to 
the large number of possible destination-door allocations. Therefore, we develop heuristics to find 

*τ  approximately. We describe below two heuristic approaches for solving the problem that we 
found to be effective in our study. 
 
5.3 Approach 1: Local Search Method 
 
Local search methods have been successfully used to get good solutions for many hard 
combinatorial optimization problems. To develop a local search method, for each solution y  say, 
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we have to define a neighborhood of it which is a set of solutions obtained by making local 
exchanges in y . This defines a neighborhood structure on the set of all solutions. Once a 
neighborhood structure is defined, the local search method starts at an initial solution 0y , looks 

for a better solution in the neighborhood of 0y . If such a solution 'y  is found the method 

repeats this process with 'y . If the neighborhood of 0y contains no solution better than 0y  the 

method terminates with 0y  as the local optimum for the problem. We present below our local 
search method for DDAP. Let 
 

sI  = the set of inbound trailer arrivals in scenario s , for s S∈ . 
 
I  = s S sI∈U , set of all inbound trailer arrivals. 
 

ijP  = number of pallets in trailer i  whose destination is j , for every inbound trailer i I∈  

and destination j J∈ . 
 
Algorithm 1 (Local Search) 
 
Step 1 Find an initial destination-door allocation 0 Kτ ∈ . Evaluate 0( )f τ  as discussed 
above. The algorithm may start with the destination-door allocation currently used at the ICT, or 
one generated randomly. 
 
Step 2 Identify a better destination-door allocation in the neighborhood of 0τ . We create a 
linear approximation to the objective function ( )f τ  to search for a better allocation. Let  
 
D D∈  = the set of doors that are allocated to destinations by 0τ . 

c
D  = \D D . 
 

\i D Dδ =  = the door allocated to trailer i   by policy δ  at the time it is unloaded, for each 
inbound trailer  i I∈ . 
 

djc  = 
iij di I

p tδ∈∑ , for each destination j J∈  and door d D∈ , cost of processing all pallets 

going to destination j  when it is assigned to door d  and each inbound trailer i I∈  is 
assigned to door iδ . 
 
For any destination-door allocation τ  over the set D , we associate a 0-1 vector ( )djx xτ τ=  
such that 
 

1,  if door  is allocated to destination by ;
0,  otherwise.dj

d D j Jxτ τ⎧ ∈ ∈⎪= ⎨
⎪⎩
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Then it can be verified that the sample mean objective value of 0τ , 0( )f τ , is equal to 
0

dj djd D j J
c x

τ

∈ ∈∑ ∑ . For other values of τ , we can use the function ( ) dj djd D j J
g x c xτ τ

∈ ∈
=∑ ∑  

as a linear approximation for ( )f τ , to search for a destination-door allocation τ  using the 

same set of destination doors D  used by 0τ , which may be superior to the present 0τ . But as 
0τ τ≠ , ( )f τ  and ( )g xτ  may not be equal. 

 
We keep the inbound door allocations to trailers in I  fixed as represented by iδ , and look for 

destination-door allocation τ  among those using the same set of destination doors D  used by 
0τ , that minimizes the linear approximation ( )g xτ . 

 
This leads to the following bipartite assignment problem: 
 

minimize ( ) dj djd D j J
g x c xτ τ

∈ ∈
=∑ ∑  

subject to  
 1,  dj djd D

c x j Jτ
∈

= ∀ ∈∑  

 1,   djj J
x d Dτ

∈
= ∀ ∈∑  

 {0,1},  ,  djx d D j Jτ ∈ ∀ ∈ ∈  
 
The bipartite assignment problem above can be solved very efficiently using network flow 
techniques, see for example Ahuja et al. (1993). If 

0

xτ  is optimal to this assignment problem, go 
to Step 3. Otherwise let 1τ  be the destination-door allocation corresponding to an optimum 
solution of this assignment problem. Compute 1( )f τ . 
 
If  1 0( ) ( )f fτ τ< , replace  0τ   with  1τ   and repeat Step 2 with it. If  1 0( ) ( )f fτ τ≥ , go 
to Step 3. 
 
Step 3 Identify improvements by changing in the set of doors assigned to destinations. For 

each destination j J∈ , and door 
c

d D∈ , evaluate ( ')f τ  where ( ')f τ  is the 

destination-door allocation resulting from changing the door allocation of destination j  in 0τ  
to door d . 
 
If there exists such an exchange with positive savings, let ''τ  be the destination-door allocation 
resulting from the exchange with the largest savings. Set 0 ''τ τ=  and go to Step 2 with it; 
otherwise go to Step 4. 
 
Step 4 Termination. The present destination-door allocation 0τ  is the best destination-door 
allocation found by the algorithm. 
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The algorithm seeks two types of improvements on the current solution 0τ . In Step 2, the 
algorithm tries to find the best destination-door assignment using a linear approximation of the 
objective function. In Step 3, the algorithm searches for improvements by changing the set of 
doors assigned to destinations. When neither type of improvement exists, the algorithm 
terminates. The local search procedure above can be run multiple times using different starting 
solutions. This improves the chance of getting better results. 
 
5.4 Approach 2: Genetic Algorithm 
 
The genetic algorithm (GA) is a powerful and robust heuristic approach for large-scale 
combinatorial optimization problems (Holland 1975, Goldberg 1989, Davis 1991). 
 
In GA, each solution of the problem is represented using some coding scheme and the resulting 
representation is called a chromosome. GA is an iterative search method that is initiated with a 
population of solutions (represented as chromosomes). Typically the starting population is 
generated randomly. In each iteration the population is changed by two types of steps. In one, two 
solutions are selected randomly from the population as parents to be replaced by two children 
generated from them by a combinatorial operation called crossover. In the other, one solution is 
selected randomly from the population, and either changed slightly (mutation), or replaced by 
another from outside (immigration). 
 
A basic GA requires specification of the three components listed above: (i) Representation of 
solutions as chromosomes, (ii) crossover operation, and (iii) mutation/immigration operation. In 
addition to these components, we also use another component for GA, used in Ahuja et al. (2000), 
in which a subset of solutions from the population are selected and replaced with solutions 
obtained by applying a local search heuristic on them. The GA terminates after some iterations, 
and takes the best solution in the population at that time as the output. We next describe the 
components for our implementation of the GA. 
 
5.4.1 Representation of a Solution 
 
In the DDAP, the number of available doors, n  is larger than the number of destinations m . 
However, for the purpose of representation as a chromosome, we introduce n m−  dummy 
destinations and number them 1m + , …, n . Using these additional destinations, we can 
represent a destination-door assignment as a permutation of n  numbers as follows. Suppose 

1a , …, na  is the permutation, then the destination 1a  is assigned to door 1, 2a  is assigned to 
door 2, and so on with the convention that if a door is assigned a number greater than m  then it 
has no destination assigned to it.  For example, if there are 8 doors and 4 destinations, then 
destinations 5, 6, 7, 8 are dummy destinations. In this case the permutation (1, 4, 5, 2, 6, 3, 7, 8) 
represents the solution in which outbound doors are (1, 2, 4, 6) allocated to destinations (1, 4, 2, 3) 
in that order, and doors 3, 5, 7, 8 are inbound doors. 
 
5.4.2 Crossover Operation 
 
In our crossover operation, we generate a single child solution that replaces one of the parent 
solutions. Let 1I  = ( 1a , …, na ), 2I  = ( 1b , …, nb ) be two parent solutions selected for the 
crossover. We use the insert path crossover to generate a single child solution with the property 
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that if k ka b=  then the child has ( )k ka b=  in its kth position. The child solution is obtained as 
follows. 
 
We start at some random position and examine the permutations 1I , 2I  from left to right in a 
cyclic fashion. If the entries in the position being looked at are the same, we move to the next 
position. Otherwise, let a , b  be the entries at the current position in permutations 1I  and 2I , 

respectively. We obtain two new solutions as follows. The first solution, say 1P , is generated 

from 1I , by inserting b  in the current location which has a , and shifting a  and the 

following entries to the right in a cyclic way so that the entries common between 1I  and 2I  are 

not shifted. The second solution, say 2P , is generated in a similar way by using 2I  in place of 

1I , and inserting a  in the position of b . We choose the solution with the smaller objective 
value to continue. The chosen solution is stored in a list L . If the solution 1P  has the smaller 

objective value then we repeat the process with 1P  (replacing 1I ) and 2I  starting at the next 

position in the permutations representing them, otherwise we use 1I  and 2P . We continue in 
this fashion until all positions are considered. 
 
If the best solution in L  is better than one of the parents, it replaces the worst parent. If it is 
worse than both the parents, then it replaces the parent that is more similar to it. The insert path 
crossover is illustrated in Figure 2 with parents 1I  and 2I  and the resulting solutions 1P  and 

2P  when the position being considered is 6. 
 

1I : 1-2-3-4-5-6-7-8 6a =  1P : 1-2-3-4-5-8-6-7 

2I : 6-7-3-4-5-8-2-1 8b =  2P :1-7-3-4-5-6-8-2 

 
Figure 2. Insert path crossover. The common entries are shown in bold type and the current 
position being looked at is the 6th. 
 
5.4.3 Mutation/Immigration Operation 
 
For immigration we select the worst solutions in the current population by new randomly 
generated solutions. We use a variable immigration rate in our algorithm. At the beginning, we 
perform immigration after every 10 trials, and then increase the number of trials between 
immigrations by 2 after every 200 trials. 
 
In some iterations we change the population by applying the two-exchange heuristic to improve 
20% of the population. 
 
6. COMPUTATIONAL STUDY 
 
For our computational study we use data on actual scenarios collected at an ICT of a national LTL 
carrier, with about 120 doors involving about 70 destinations. However, to keep the company data 
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confidential, here we report on the results from computational work using simulated data 
patterned after the actual. 
 
The company and previous models use average data to determine the destination-door allocations. 
This is done based on the ratio of freight volume going to each destination regardless of the 
freight's origins. Therefore, we use this ratio to generate scenarios for the computational study. 
The ratio of pallets going to each destination observes this ratio. The average number of inbound 
trailers arriving/night is about 100. We use the online policy described in Section 4 in the 
computational study. The online policy is superior to the policy used by the company described in 
Section 1.1. 
 
All programming is done in C++ and the testing is done on a PC with single Intel Pentium 4 
1.4GB CPU, 1GB RAM, and 256KB L-2 Cache. 
 
Performance of the Local Search Heuristic (LS) and GA: 
 
We apply LS and GA to produce a destination-door allocation and compare it with the current 
destination-door allocation used at the ICT during this period. 
 
For the GA, we tested various combinations of initial population size and maximum iteration 
number. We noticed that small population size (10), and higher number of iterations (20,000) 
tended to give best results, so we report on results with the settings. 
 
Data from 20 scenarios was used to select the destination-door allocation first, by both LS and 
GA separately. Then each of these destination-door allocations was fixed and its performance was 
evaluated over 60 additional scenarios. 
 
Results for our algorithms refer to this destination-door allocation, and door allocations made by 
the policy described in Section 4. Results reported for current practice refer to the 
destination-door allocation in use at the ICT at the time of data collection, and the same policy 
(Section 4) for unloading door allocation. 
 
For the final set of 60 scenarios, the average man-hour requirement/night for the solutions 
obtained by the various algorithms are: 
 
- (LS) Local Search Heuristic: 41.7 
- (GA) Genetic Algorithm: 41.6 
- (CP) Current Practice: 53.4 
 
It can be seen that the solutions obtained by both algorithms of Section 5 are about the same and 
about 22% better than that under current practice. Figure 3 shows a plot of the man-hours (in 
minutes)/night under each of these 60 scenarios separately, for each of the above solutions. It can 
be seen that the solutions obtained by the algorithms are superior not only on an average, but also 
every night. 
 
7. SUMMARY 
 
We discussed a new on-line approach for allocating doors to arriving inbound trailers at an ICT of 
an LTL carrier that takes into account all the actual input data needed for this decision (Stage 1). 
Using this we developed approaches for allocating doors to destinations that help to minimize the 
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expected man-hours for consolidating freight daily (Stage 2). This Stage 2 problem is very 
complex because the objective function to be optimized is not available as an explicit expression,  
and can only be estimated by simulations. 
 

 
 

Figure 3. Man-hours taken for consolidating all freight in scenario. 
 
Computational results at an ICT of an LTL carrier, using simulation based on observed data over a 
representative period of time, indicate that the man-hour requirement can be reduced by over 20% 
compared to current practice. 
 
There are several potential topics for consideration in continued research. In the present system, 
each dock worker has the full responsibility to unload all the pallets in an inbound trailer once 
s/he begins to unload it, and then only moves on to unloading another inbound trailer. This system 
does result in some wasted labor and fuel. Treating dock Workers as a pool to unload all inbound 
trailers may increase the overall productivity of the consolidation operation. 
 
The uncertainties associated with the inbound trailer arrival stream and freight contents can be 
reduced by using advanced communication and information technologies. Also, the capability of 
automated material handling systems (MHSs) such as automated guided vehicles, if properly 
used, can significantly enhance the efficiency of consolidation operations. The influence of 
information technology and automated MHSs on allocation policy can be taken into account in 
future research. 
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